Preconditioning and iterative solution of symmetric indefinite linear systems arising from interior point methods for linear programming

نویسندگان

  • Joo-Siong Chai
  • Kim-Chuan Toh
چکیده

We propose to compute the search direction at each interior-point iteration for a linear program via a reduced augmented system that typically has a much smaller dimension than the original augmented system. This reduced system is potentially less susceptible to the ill-conditioning effect of the elements in the (1, 1) block of the augmented matrix. A preconditioner is then designed by approximating the block structure of the inverse of the transformed matrix to further improve the spectral properties of the transformed system. The resulting preconditioned system is likely to become better conditioned toward the end of the interior-point algorithm. Capitalizing on the special spectral properties of the transformed matrix, we further proposed a two-phase iterative algorithm that starts by solving the normal equations with PCG in each IPM iteration, and then switches to solve the preconditioned reduced augmented system Computational Engineering Program, Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore 117576. ([email protected]). Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore ([email protected]); and Singapore-MIT Alliance, E4-04-10, 4 Engineering Drive 3, Singapore 117576. Research supported in parts by NUS Research Grant R146-000-076-112 and SMA IUP Research Grant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioning Indefinite Systems in Interior-Point Methods for quadratic optimization

A new class of preconditioners is proposed for the iterative solution of symmetric indefinite systems arising from interior-point methods. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Now we introduce two types of preconditione...

متن کامل

ABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming

 Abstract  We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...

متن کامل

Preconditioning Indefinite Systems in Interior Point Methods for Optimization

Every Newton step in an interior-point method for optimization requires a solution of a symmetric indefinite system of linear equations. Most of today’s codes apply direct solution methods to perform this task. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless a...

متن کامل

Preconditioning indefinite systems in interior point methods for large scale linear optimisation

We discuss the use of preconditioned conjugate gradients method for solving the reduced KKT systems arising in interior point algorithms for linear programming. The (indefinite) augmented system form of this linear system has a number of advantages, notably a higher degree of sparsity than the (positive definite) normal equations form. Therefore we use the conjugate gradients method to solve th...

متن کامل

Preconditioning Indefinite Systems in Interior Point Methods for Large Scale Linear Optimization

We discuss the use of preconditioned conjugate gradients method for solving the reduced KKT systems arising in interior point algorithms for linear programming. The (indefinite) augmented system form of this linear system has a number of advantages, notably a higher degree of sparsity than the (positive definite) normal equations form. Therefore we use the conjugate gradients method to solve th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2007